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We build and investigate a pure gauge theory on arbitrary discrete groups. A systematic approach 
to the construction of the differential calculus is presented. We study the metric properties of the 
models and introduce the action functionals for unitary gauge theories. A detailed analysis of two 
simple models based on Z2 and Z3 follows. Finally we discuss briefly the models with additional 
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1. Introduction and notation 

The noncommutative geometry provides us with a far more general framework for 
physical theories than the usual approaches. Its basic idea is to substitute an abstract, 

associative and not necessarily commutative algebra for the algebra of functions on 
a smooth manifold [ 1-5]. This allows us to use nontrivial algebras as a geometrical 
setup for field-theoretical purposes, in particular for gauge theories, which are of special 

interest both from mathematical and physical point of view. 
The construction of noncommutative gauge theories has led to a remarkable result, 

which is the description of the Higgs field in terms of a gauge potential. This suggests 
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some possible nontrivial geometry behind the structure of the Standard Model. Several 
examples of  this kind, with various choices of fundamental objects of the theory, have 

been investigated in such a context (see [5-13] and references therein). The "discrete 
geometry" models, which take as the algebra the set of functions on a discrete space, 

seem to be one of the most promising interpretations [4,5] and suggest that such a 
geometry may play an important role in physics. Recently, some more analysis has been 
carried out for discrete spaces [ 14,15] in the context of grand unification and general 

relativity. 
We propose to develop here a systematic approach towards the construction of field 

theories, in particular the gauge theory, on arbitrary discrete spaces equipped with the 

group structure. The choice of a group as our base space allows us to make use of 
the correspondence with the differential calculus on Lie groups. We define the objects, 
which correspond to invariant vector fields (though they are not derivations) and forms 

(dual to the latter), building the differential calculus on the discrete space. 
We introduce also the concept of a metric on the differential algebra, which allows 

us to construct the actions of  the fundamental physical models. We demonstrate that, in 

general, the ambiguity in the possible form of the action is much broader than in the 

case of  continuous theories. 
The paper is organised as follows: in the first section we construct the tools of  

the differential calculus. We present a new way of constructing such a calculus in 

noncommutative geometry, introducing the concept of vector fields. We develop also a 

new approach to the metric in noncommutative geometry, introducing the analogue of 

metric tensor. 
Next we outline the general formalism of gauge theories in this case and some 

problems of the construction of actions, outlining the existence of many possibilities. The 
discussion of two examples follows. Finally we present other possibilities originating 
from the symmetry principles, the results of combining the discrete and continuous 

geometry. 

2. Differential calculus 

Let G be a finite group and ..4 be the algebra of complex valued functions on G. We 
will denote the group multiplication by ® and the size of the group by No. The right and 
left multiplications on G induce natural automorphisms of .4, Rg and Lg, respectively, 

( R h f )  (g)  = f ( g Q h ) ,  (1) 

with a similar definition for Lg. 
Now we will construct the extension of -4 into a graded differential algebra. We 

shall attempt to follow the standard procedure of introducing the differential calculus 
on manifolds, in particular on Lie groups. Therefore we shall use almost the same 
terminology, though the properties of certain objects may differ from the usual ones. 
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First let us identify the space of  vector fields V over ,4 with the linear operators on 

A, which have their kernel equal to the space of  constant functions. Let us point out 

here that we require no other condition, in particular, the Leibniz rule is not obeyed. 
Such operators form a finite dimensional left module over .,4. Now, we can define the 

vector space F of  left invariant vector fields as satisfying the following identity: 

O E .F ¢~ Vf  C ,,4, LhO(f) = a(Lhf). (2) 

Before we discuss the algebraic structure of  f let us observe that this vector space is 

Nc - 1 dimensional and it generates the module of  vector fields. Therefore for a given 

basis of  F, {tgi}i=,l...,Nc,, every vector field can be expressed as a linear combination fiOi, 
with the coefficients fi from the algebra A. 

.F forms an algebra itself and we find the relations of  the generators to be of  second 

order, 

OiOJ = E Cik ok' (3) 
k 

where C~ are the structure constants. Because of  the associativity of  the algebra they 

must obey the following set of  relations, 

E C[jC~ = E C,'C~k. (4) 
1 1 

Now we choose a specific basis of  .7- and calculate the relations (3) in this particular 

case. It is convenient for our purposes to introduce the basis of  .7" labelled by the 

elements of  G / = G \ {e}, where e is the neutral element of  G. Further on, if not stated 

otherwise, it should be assumed that all indices take values in G t. We define: 

?gf = f - R g f ,  gEG',  f e A .  (5) 

The structure relations (3) become quite simple in the chosen basis, 

OgOh = Og q- Oh -- O(hQg), g, h C a t. (6) 

As a next step let us introduce the Haar integral, which is a complex valued linear 

functional on A that remains invariant under the action of  both R e and Lg, 

= ~ f(g),  (7) 

where we normalised it so that f 1 = 1. 
Although the elements of  5 r do not satisfy the Leibniz rule, they are, in a sense, 

inverse to the integration. Indeed, we notice that for every f C .,4 and every v E .F the 
integral (7) of  v ( f )  vanishes. For this reason we can consider them as corresponding 

to the derivations on the algebra ..4. 
We define now the space of  one-forms ~1 as a right module over .,4, which is dual to 

the space of  vector fields. Of course, we can also introduce the notion of  left invariant 

forms, which, when acting on the elements of  .F, give constant functions. 
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Having chosen the basic of O r we automatically have the dual basis of Or* consisting 

of forms X g, g E G ~, which satisfy 

X~(ah) = ~ .  (8) 

To build a graded differential algebra we need to construct n-forms and their products 

for an arbitrary positive integer n. Of course, we identify zero-forms with the algebra .4 

itself and their product with the product in the algebra. The definition for higher forms 
is natural, we take On to be the tensor product of n copies of 01, 

/'P = O l ® . . . ® O  1 (9) 
% s '  

Y 

n times 

and the product of forms to be the tensor product over .4. We have assumed here 
that 01 is a bimodule, with algebra .4 acting from both sides, which may not be the 
same. In fact, it appears that the left action could be defined only when introducing the 

differential structure on the algebra S2: 

Lemma 1. There exists exactly one linear operator d, d : O n ~ on+l, which is nilpo- 
tent, d 2 = O, satisfies the graded Leibniz rule and for every f E .4 and every vector 
field v, d f ( v )  = v ( f ) ,  provided that the right and left action of .4  on or* are related as 
follows, 

f x g = x g ( R g f ) ,  g E G ' ,  f ~ . 4 ,  (10) 

and that the following structure relations hold, 

dxg = Z g k G t. Chk X ® X  h, g E  (11) 
h,k 

Before we prove the lemma, let us observe that since the invariant one-forms are a 

basis of S21 the left action of .4 (10) could be extended to all one-forms. The next 

requirement (11) is equivalent to the Maurer-Cartan structure relation on Lie groups. 

Proof Since we want d to satisfy the graded Leibniz rule, it is sufficient to define 
the action of d on .,4 and on or* because all other forms can be represented as tensor 
products of them. The action of d on .4 is defined by the requirement stated in the 

lemma, from which we get that 

df  = Z x g ( O g f ) .  (12) 
g 

The Leibniz rule applied to the product of any two elements a, b E `4, gives the following 

identity: 

Z x g ( a b - R u ( a ) R g ( b ) )  = Z x g ( a - R g ( a ) ) b + a x g ( b - R g ( b ) ) ,  (13) 
g g 

which is satisfied only if (10) holds. The Maurer-Cartan relations arise from the re- 
quirement that d 2 acting on an arbitrary a C .4 must vanish. Indeed, we calculate, 
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= ~_, - X  h ® xkC~h( a~a) + ~-~ dxh( Oha), (14) 
h,k h 

and this expression vanishes only if (11) is true. 

If  for any vector field v = ~ g  vgag we calculate da(v): 

da(v) = ~ 1 ) g x h ( a g ) C g h ( a )  . . . .  

g,h 

and since X g is a basis dual to Oh we finally obtain: 

. . . .  ~ v~:O~( a) = v( a), 
g 

so we have verified that the external derivative has the same property as in the usual 
differential geometry. This ends the proof. [] 

In our construction we have obtained the differential algebra over the algebra of 

complex functions on a discrete group, which may be the starting point for the analysis 

of this structure. 
The differential calculus presented here is equivalent to the universal differential 

calculus and therefore it does not depend on the group structure of the discrete space, 

which remains then only a convenient tool. We shall demonstrate later that the group 
structure is important when considering other examples of differential calculi resulting 

from the one discussed above. 

Let us end this section by constructing the involution on our differential algebra, 

which agrees with the complex conjugation on .,4 and (graded) commutes with d, i.e. 
d(w*) = (--1)deg~°(dw)*. Again, it is sufficient to define it for the basis of one-forms, 

( x g )  * = -x g ' .  (15)  

So far, we restricted ourselves in our approach to the complex-valued functions. 
Similarly we can consider a straightforward extension of the model if we take functions 
valued in any involutive algebra, for instance, the matrix valued functions. The quotient 

subalgebras of the algebra obtained may also be considered, and we shall briefly discuss 

it in the last section. 

3. Gauge theory 

3.1. General formalism 

In this section we shall construct the gauge theory on finite groups using the differen- 
tial calculus we have just introduced. First let us explain some basic ideas. The starting 
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point is the differential algebra S2* with its subalgebra of zero-forms .A c .Q*. We take 

the group of gauge transformations to be any proper group 7-( C J .  which generates 4 .  
In particular, we shall often take 7-/to be the group of unitary elements of 4 ,  

~ = / g ( J I )  = { a E ~ : a a * = a * a =  1}. 

Of course, the external derivative d is not covariant with respect to the gauge trans- 

formations. Therefore we have to introduce the covariant derivative d + ¢', where ~/' is a 

one-form. The requirement that d + q~ is gauge covariant under gauge transformations, 

d + @  --~ H - I ( d + @ ) H ,  HET-[, (16) 

results in the following transformation rule of ,P, 

q~ --* H-lq~H + H - l d H .  (17) 

q~ is the gauge potential, which we will also call connection. If  the gauge group is 

unitary, we require also that the covariant derivative is hermitian, 

d(a*b) = a * ( d + ~ ) b + ( b * ( d + ~ ) a ) * ,  a, b e . ~ ,  (18) 

which results in the condition that the connection is anti-selfadjoint, q~ = -q~*. Finally, 
we have the curvature two-form, F = dq~ ÷ q~q~, which, of course, is gauge covariant. 

3.2. Gauge transformations, connection and curvature on discrete groups 

Let us take the algebra .~, to be the tensor product of the algebra ..4 of complex valued 
functions on G, which we introduced in the previous section, by a certain algebra A, 

which could be the algebra of complex n × n matrices Mn, for instance. In such a case, 
the differential algebra s2* is clearly the tensor product of/2* by A. The group of gauge 
transformations, as defined above, can be identified with the group of functions on G 
taking values in a group H C A. Similarly, gauge potentials are interpreted as A valued 

one-forms. We will denote the involution on A by t. 

Before we introduce the metric and present the Yang-Mills actions, let us work out the 
gauge transformation rules (17) for the connection and the curvature in the convenient 

basis we chose (8) in our paper. If we write q~ = ~uXgq~g, the transformation of ~bg 
under a gauge transformation H c 7-{ is, 

q~g ~ (RgH)-lq~gH + (RgH)-IagH.  (19) 

The condition q0 = -q~* enforces the following relation of its coefficients, 

~g = gg(~g--l). (20) 

If  we introduce a new field q~g = 1 + ~/,g, we can see that (19) is equivalent to 

aI~g ~ ( RgH)-lattgn. (21) 
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The introduction of ~g is convenient for the calculations as it simplifies the formulas. 

We will discuss the physical meaning of this step later. It is instructive to compare the 

formulas for the coefficients of the curvature, 

F = Z xg @ xh Fgh, 
g,h 

using both q~g and qtg. In the first case, we obtain from the definition of F, the rules 

of differential calculus (10), (11 ) and the exact form of the structure constants in this 
basis (5),  

Fuh = ~h + Rh(~g)  + Rh(~g)qbh -- qb(gOh ), (22) 

whereas the same formula written using ~u is much simpler, 

F&,h = qq~Oh) -- Rh(q~g) (qth). (23) 

The transformation rule for Fgh follows from the gauge covariance of F. However, since 

the algebra is noncommutative the coefficients are no longer gauge covariant: 

Fgh --+ R(uoh)( H - I  ) Fgh H. (24) 

In order to proceed with the construction and analysis of the Yang-Mills theory we 
have to introduce a metric. 

3.3. Metric 

In this subsection we shall briefly discuss a general concept of a metric tensor in 

noncommutative geometry [11-13] and we shall concentrate on the analysis of the 

model with discrete geometry. 
Let us define the metric ~7 as a form on the left module of one-forms, valued in the 

algebra J[ and middle-linear over the algebra .~, 

r / : s ~  l x s~ J ~ 4 ,  

rl(avc, ub ) =arl(V, cu)b, a,b,  c E.A,  U,U E j~l. (25) 

Note that r /can no longer be symmetric; however we may require that it is hermitian: 

rl(U,V)* = rl(V*,U*), Vu, v E S~l J (26) 

Let us observe the properties of this metric on the discrete space. Since the invari- 
ant forms X g are the basis of /0~ the metric is determined by its coefficients "r/gh = 
rl(X g, xh ) .  Now, from the property of middle-linearity (25) and the rules of left and 

right multiplication (10) we obtain 

arl uh = "rlghRuoh a, g, h E G/, a E .A, (27) 



130 A. Sitarz/Journal of Geometry and Physics 15 (1995) 123-136 

which can be satisfied only if ~7 gh vanishes for g 5/h - l .  Therefore, the metric must have 
the following form: 

.ogh = Eg6g-lh), (28) 

where Eg are arbitrary elements of .A. If  we assume that the metric is hermitian, we 
must have Eg = E~g. If  we look closely at these conditions (28) we shall see that the 

metric is in fact diagonal, as for any one form v = ~"~g Xgog w e  have 

~7(v*,v) = Z Eg-,V~Vg. 
g 

It is rather surprising that in general we have that r/(v*, v) ~ r/(v, v*); however after 
integrating both sides we may recover the equality only if Eg = Rg-~Eg-~. 

Finally let us briefly touch on the subject of extension of the metric to the forms 

of higher order. Since any two-form can be decomposed into a sum of products of 

one-forms, let us observe that we may define two different middle-linear functionals on 

fi2: 

01 (al ® bl, a2 @ b2) = r /(al ,  bl )'q(a2, b2), (29) 

02(al ® bl,a2 ® b2) =rl(al,rl(bl,a2)b2).  (30) 

It is easy to check that they are also hermitian in the sense of definition (26). 

Let us point out that the existence of two different middle-linear functionals built 

from the metric on the module of two-forms is a new property which appears in the 
noncommutative geometry. In the classical differential geometry one of them is trivial 

due to the anticommutativity of differential forms. 
Another interesting property of the considered differential calculus is the existence of 

a linear functional 0l : ~02 -~ .A, defined simply as: 

Ol(a®b) = r / ( a ,b ) .  (31) 

It is easy to see that (29) is simply a product of this linear functional. 

We shall use all these functionals to construct the actions in models of gauge theory 
on discrete spaces. 

3.4. The Yang-Mills action 

We would like the Yang-Mills action to be constructed in the same way as in the 
case of the gauge theories on manifolds. Therefore, we postulate that for an involutive 
algebra and the structure group H C / g (A) ,  it has the following form, 

svM = :z:(¢,) ,  (32) 
G 

where f6 is the Haar integral on ,,4 and £ ( ~ )  is the gauge invariant Lagrangian 
belonging to the algebra ,,4, which is of second order in the curvature F. First of 
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all, from our discussion of the metric we notice that there are many possibilities of such 

actions. We encounter an ambiguity in the choice of the middle-linear functional on the 

module of two-forms, as any linear combination of 01 and 02 (29), (30) can be used. 
Moreover, we have the ambiguity which arises from the difference between 0(F*, F) 
and 0(F, F*). 

Finally, due to the existence of (31) we may admit an additional gauge invariant term 
linear in the curvature F, which is also a new feature of our theory. 

Now, let us calculate explicitly all these actions. We assume only the hermiticity of the 

metric, having in mind that further constraints shall reduce the number of possibilities. 

Using the functional 02 (30) we get the usual Yang-Mills lagrangian, and after 
integrating we have: 

= f ( Rhe.-, )eh-, Fi*hF.h . 
G g,h 

(33) 

If we take 02(F,F*) instead of 02(F*,F) we shall get the same kind of action as 
above, however with a redefined metric: 

Eg-~ ~ Rh-~og-~Eg. 

The other Yang-Mills type action results from taking the functional 02 (29). The 

action reads: 

SyM = f ~_, EgEh-, Fg*(g-,)Fh(h-,). (34) 
G g,h 

In this case if we take 01 (F, F*) we shall obtain the same action. 
Finally we are able to construct the action linear in F, 

Let us point out that the constructed actions or rather each possible linear combination 

of them may pretend to be the effective action of our theory. This ambiguity appears 
only due to the noncommutativity of the differential algebra. Another significant feature 
of the theory is that the space of possible metrics on 12" is much smaller than one would 

expect. 

4. Examples 

In this section we shall briefly discuss two simple examples of the unitary gauge 
theory on the two- and three-point spaces. We shall construct the action functionals and 
discuss briefly the solutions and their geometry. 
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4.1. Gauge theory on Z2 

Let us denote the group elements of Z2 by 4- and - .  We take the group H to be 

U ( N )  and the algebra A to be the algebra of complex matrices M,.  Since the structure 

group is unitary, the connection must be antihermitian, therefore we obtain the following 
relation, 

~ _ ( + )  = ¢ , t ( _ ) ,  (36) 

and the same applies to 1/,_ = 1 4- q~_. Thus, effectively we have got only one degree 

of freedom, which is an arbitrary complex matrix. We take it as ~P = I / ' _ (+)  and for 

convenience we drop here the subscript. 

Let us observe that for n > 1 all £P are one-dimensional. Consequently, the curvature 

two-form F = X -  ® X - F - -  is completely determined by one coefficient function F__,  

which using Eqs. (23), (36) can be calculated, 

F__ ( + ) =  _ ( ~ t ~ _  1), (37) 

F _ _ ( - )  = _ ( ~ t  _ 1). (38) 

The metric is set by one function on Z2, E_ ; for simplicity we assume that it is 
constant and equal to 1. Now one can easily see that all possibilities for the Yang-Mills 

action are reduced to the following, 

SyM = T r ( ~ t ~  -- 1) 2, (39) 

where we have already done the Haar integration. 

This has exactly the form of the potential of the Higgs model and was first obtained in 

Connes' consideration of the C 2 algebra [2]. Here, however, we can modify this action 
slightly by adding the term linear in F (35), proportional to Tr(~/'ff t - 1 ). The physical 

meaning of this term is very important, without it we should get a relation between the 
Higgs mass and other parameters. However, if this term is present, the Higgs mass is 
still a free parameter of the model. 

Let us now make short comments on the moduli space of the theory and the extremal 

points of the action functionals. The space of fiat connections modulo gauge transforma- 

tions is trivial. Indeed, the vanishing of F is equivalent to the unitarity of ~ and from 
its transformation rule (21) we see that arbitrary ap can be obtained from the trivial fiat 
connection, g" = 1, by choosing the appropriate gauge transformation. The Yang-Mills 
action has one absolute minimum, which is reached for the fiat connections. 

4.2. Gauge theory on Z3 

Let us denote the elements of the group by 0, 1, - 1  and the group action by 4-. The 
space of one-forms is two-dimensional, spanned by the basis of invariant forms X +, X - ,  
(for the indices, + stands for +1 and - for - 1 ) .  
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We choose the metric "q to be in its simplest form, so that E+ and E -  are both 

constant. The algebra of  derivations O+, 0_ obeys the following relations, 

0_0_ = 20_ - 0+, (40) 

0+0+ = 20+ - 0_, (41) 

0_0+ = 0 + 0 _  = 0+ + 0_ ,  (42)  

which determine the structure constants and the rules of  the differential calculus in this 
case ( 11 ). 

Now, let us again construct the U(N)  gauge theory. The gauge potential one-form ,/, 

could be expressed as X+@+ + X - ' / ' - .  The condition that q~ is antihermitian (20) takes 
the form, 

~ + ( g )  = q 0 ~ ( g + l ) ,  g E Z 3 .  (43) 

From this relation we see that the connection is completely determined by either of  its 
coefficients. Let us define gt = 1 -4-tit,+, and use it in our further analysis. Its gauge 
transformation is as follows, 

~F(g) ~ n t ( g + l ) , F ( g ) n ( g ) ,  n ( g )  E U ( N ) ,  g E Z 3 .  (44) 

Now we can express the curvature in terms of  the function ~ .  

F++ = ( R _ ~  t) - (R+aP')g', (45) 

F+_ = 1 - (R_g t )  (R_*P') t, (46) 

F_+ = 1 - ~ t ~ ,  (47) 

F__  = ~  - (R+gt t )  ( R _ g  *t) - *P'. (48) 

One can easily notice that F__  = R+Ft++ and both F+_ and F_+ are hermitian. 

Before we discuss the action functionals let us find the moduli space of  flat connections 

in this case. If  F vanishes, from (46) we obtain that the function a/, must be unitary, 

whereas F++ = 0 gives us from (45) and from the previous result the following identity, 

(R+'I')qs(R_g ") = 1. (49) 

Using the transformation rule (44) and the condition above we can again show that all 
flat connections are gauge equivalent. 

Finally, let us present the actions. The action linear in F is, 

2 fWr(E+ +E_) ( ~ t  _ I), (50) Sm 

and we are left with two possibilities for the Yang-Mills type quartic action, 

S,=fTr((2E+E_(I-~t~)2) +(E 2_+E2+)(I ,k,t~)R_(l ~tq,)), (51) 
J 
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s2 = f T r  - + (eL + ( q ~ t  (1 + R+(~/ '~t))  

- R _ ( ~ ) ~ R + ( ~ )  - R + ( ~ t ) ~ t R _ ( ~ t ) )  . (52) 

Each linear combination of them may pretend to be the global action of the theory. 

Let us observe the remarkable property that the second action (52) contains a third 
order polynomial in q,', and a certain combination of $1, $2 and Sm may be in fact such 

a term: 

= s ,  - - c S , ,  = f T r ( e  +c.c.), (53) 

where c is a constant c = (E2+ + E 2 ) / (E+ + E_ ). 
This property is rather surprising, and though it does not appear in the Zz case, we 

may expect that it is common for discrete differential calculus. 

The problem of the extremal points of the presented actions is more complicated than 

in the previous example and in some cases the action might not even have an absolute 

minimum. 

5. Symmetries and subalgebras 

This section is devoted to a brief discussion of possible restrictions of the theory, 

which arise from considering subalgebras of the constructed differential algebra. 

Suppose we take a proper subalgebra of 4 ,  we shall denote it by/3  E 4 .  Then we can 
find a graded differential subalgebra of /~( -4)  in such a way that the zero-forms are the 

elements of /3  and all the rules of differential calculus remain unchanged. For instance, 
let us consider the subalgebra of .4 which contains all C-valued constant functions on 

the group G and denote it by -40. If  we take as O n all differential forms that have their 
coefficients in -40, we obtain the required subalgebra of 12". Of course, 121 is no longer 

generated by the image of d. We can express that construction in a more formal way. 

Indeed, if we use the group of automorphisms of .4, Rg, g E G, which can be easily 
extended to the whole of  12", we see that 12~ remains invariant under the action of this 

group, so the obtained differential algebra is the one of invariant differential forms. Let 

us observe that although 12" did not depend on the group structure of the discrete base 
space, the invariant differential algebra 12~ depends on it, as for different groups we 
should have different groups of automorphisms Rg. 

A trivial example, the differential calculus on Lie groups, is set by the restriction to 
the algebra of left-invariant forms. By taking this invariant differential algebra as our 
starting point we may develop a gauge theory similarly as we have proceeded with our 
earlier examples. In particular, if one considers a SU(2) gauge theory on the invariant 
differential algebra of the SU(2) group one recovers a model of a gauge theory on a 
matrix algebra with inner derivations [7-9] .  It suggests that such a model is in fact a 
kind of Kaluza-Klein theory, with additional restriction that the additional dimensions 
are in a group manifold and the physics is invariant with respect to its automorphisms. 
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Let us turn our attention back to the examples of discrete geometry. Having the 

differential grading algebra g2~ we can proceed with the construction of gauge theories 

invariant with respect to the action of the discrete group. The gauge transformations are 

now global, i.e. they are also constant when considered as functions on G. The same 
applies to the coefficients of the connection and the curvature. Let us see what the effect 
of this is for the constructed theories on Z2 and Z3. 

In the first case, from (36) we get that ~ must be hermitian. This implies that the 

minima of the Yang-Mills action (39), which again correspond to the flat connections, 
are separated. The moduli space is equal to the space of equivalence classes of unitary 
and hermitian matrices. Notice that for U( 1 ) we obtain Z2, which is the base space of 

our theory G. The same applies to the model on Z3. This time, the moduli space of 
flat connections is the space of equivalence classes of matrices that satisfy the relation 
~3 = 1. Again, for U(1) this space can be identified with Z3. 

Let us point out that by restricting ourselves to the invariant differential algebra on 

Z3 we obtain an effective gauge theory with one field and a Higgs type potential. The 
difference between this and the Z2 case lies in the form of the potential function and we 

can see that the Z3 case does not correspond to the effective potential of the Standard 
Model. 

We shall end here the discussion of possibilities arising from employing the symmetry 
principles encoded in the automorphisms of the algebras. Our aim was only to show 
this option and briefly discuss its implications for the given models. 

6. Conclusions 

We presented in this paper a systematic approach to the problem of constructing gauge 
theories on discrete spaces. This involved the introduction of the differential calculus, 
which we have carried out for spaces equipped with the structure of a finite group. Let 

us point out that the group structure becomes important only when considering some 
invariant quotients of the differential algebra. 

We introduced the notion of the metric in noncommutative geometry using only the 
differential calculus. This might be the starting point for considering gravity on discrete 

spaces; also the connection to the approach based on the Dirac operator would be 
interesting. 

We presented the construction of gauge theories only for unitary gauge groups; how- 

ever the formalism could be easily extended to arbitrary groups. In fact, they do not 

have to be continuous and one may as well use discrete groups for this purpose. Another 
spectacular property of this theory is the fact that we can take as a starting point the 
algebra, which is not necessarily the algebra of C-valued functions or functions valued 
in any algebra but its proper subalgebra. For instance, if have an algebra A, and its 
subalgebras, say A0, A1 . . . . .  we can construct the proper subalgebra of ..~ as the set of 
functions such that f ( x ) ,  x C G, takes values in Aj for some index j.  Now, following 
the same steps as we presented in this paper, we can .construct the differential calculus 
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and the gauge theories. It appears that if we consider the two-point space, as in the 

first example, with the algebra of functions taking values in C at one point and in H at 

the other, which is the algebra of quaternions, its product with the continuous geometry 

of the Minkowski space gives us the precise description of the pure gauge part of the 

electroweak interactions. Of course, in this approach fermions stay out of the picture. 

The discussion of the metric has led us to the actions of the considered models. This 

seems to be another interesting point for future investigations since the existence of 

more gauge invariant quantities is a remarkable property of this theory. 

Finally, let us notice that the restriction to finite groups may be relaxed as well and 

one can analyse similar models for infinite discrete groups like Zn, for example. 

The program of noncommutative geometry has given us the possibility of considering 

a far more general class of models than the one arising from the analysis on manifolds. 

Since quantum groups and discrete geometry are the two most interesting and promising 

examples, their study seems to be important and we believe that their analysis, in 

particular the investigation of gauge theories in this framework, will help to gain a 

better understanding of the subject. 
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